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We study the integrated density of states H ( o  2) of a chain of harmonic 
oscillators with a binary random distribution of the masses. We show in par- 
ticular that there is a dense set of values of the squared frequency for which the 
difference H(fo2 + ~;)- H(o) 2) has a singularity of the type lel 2% multiplied by a 
periodic function of In [el, where the exponent ~ and the period depend con- 
tinuously on ~o 2. In the region where c~ < 1/2, H is not differentiable on a dense 
set of points. The same type of singularities is also present in the Lyapunov coef- 
ficient. 

KEY WORDS: Density of states; random harmonic chains; one-dimensional 
systems; dense sets of singularities; Lyapunov coefficient. 

1. I N T R O D U C T I O N  

The problem of calculating the density of states of a chain of coupled har- 
monic oscillators with random masses has been studied for a long time, 
The first theoretical description was given by Dyson, (1) who showed that, 
for imaginary frequencies, the problem may be reduced to solving an 
integral equation for the distribution function of certain continued frac- 
tions. Schmidt (2) derived a similar integral equation for real frequencies. 
The relation between these two approaches has recently been discussed by 
one of the authors. (3) 

Schmidt noted a peculiarity of his distribution function in the case of a 
binary mass distribution: under some circumstances the derivative of this 
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746 Nieuwenhuizen and Luck 

function, if it exists, is zero or infinite on a dense set of points. This obser- 
vation will be the cornerstone of our investigations. 

It was then found numerically (4) that the density of states has a very 
irregular behavior at high frequency, if the ratio of heavy and light masses 
is greater than or equal to 2. In related tight-binding electron models (5'6) 
with a binary distribution of site energies, the density of states was also 
shown to possess detailed structure down to a very small scale. The authors 
of Ref. 5 concluded that a continuous density of states might not exist. A 
real-space renormalization group approach has recently been considered by 
various authors. (7 10) Their numerical or approximate results also show 
very detailed structure in the density of states, which again might rise the 
question whether this function is a well-defined quantity. 

A simple physical argument predicting power-law singularities in the 
integrated density of states of related electronic models was given by 
Halperin (33) (see also Section 2). In the language of harmonic chains, his 
result is that, near a dense set of frequencies co 2, the integrated density of 
states H((0 2) admits the bound: 

H((0O2 + 8) - H(mo 2 -- 8) > C8 2cz 

for e ~ 0, where C is some constant independent of e. In the present paper, 
we shall refine this result and derive the following behavior: 

( l n e ~  
H((0~• ~)-  H((0O2)<~ +sZ~R+_ \ l - ~ /  (1.1) 

Here R_+ are two positive periodic functions with unit period, which we 
relate to the Schmidt function at (9O2. In other words, the behavior of H in a 
small frequency interval around (0O2 is expressed in terms of the Schmidt 
function at one single frequency (9o 2. The exponent u and the scale tt both 
depend continuously on ~oo2. These singular points are generically dense in 
the interval 4/M<. ~o2~< 4 where we assume that the masses only take the 
values 1 or M. Under certain conditions, the index u is less than 1/2 in a 
high-frequency region. Then the density of states dH/&o 2 diverges on a 
dense set of points. 

The setup of this paper is as follows. In Section 2 we recall some basic 
definitions and notation. We also recall the argument of Halperin. (33) Sec- 
tion 3 is devoted to the Schmidt distribution function W(u), which is 
singular on a dense set of the real line; these power-law singularities are 
multiplied by periodic functions. It is shown in Section 4 that the integrated 
density of states H((0 2) exhibits the very same type of singularities, as men- 
tioned in Eq.(1.1). The Lifshitz (exponential) singularity at (02=4 is 
studied in Section 5: it is also modulated by a periodic amplitude. In See- 
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tion 6, we generalize our results to arbitrary discrete mass distributions. We 
also show that the Lyapunov coefficient 7(e) 2) has an analogous dense set 
of power-law singularities, and present some concluding remarks. 

2. T H E  M O D E L  

Consider an ensemble of random harmonic chains described by the 
equations of motion: 

- m ~ c o 2 a ~ = a ~ + l + a ~ _ l - 2 a ~  - --~n~<~-2 (2.1) 

where the masses m,, are independent, identically distributed random 
variables with common distribution function R(m) .  We choose the fol- 
lowing boundary conditions: a N/2 l=au /2+ t  =0,  and the normalization 
condition a N/2= 1. Equation (2.1) is then equivalent to the following 
continued fraction expression: 

Zn= an =(2_m.coZ_z , ,_L)I=Tm.(Z , ,_ ! )  
an+ l 

(2.2) 

to satisfy with the initial value Z N/2 l = 0 "  Eigenfrequencies have 
Z u/2 = 00. 

The Zn are random variables since they are functions of the ml (l~< n). 
Let us define their distribution functions at fixed frequency co 2 through 

(2.3) Wn(~l; (D 2) = prob {Zn ~ u} - prob{Z n ~< 0} 

We shall not mention 0) 2 explicitly in unambiguous equations. 
The recursion equation (2.2) implies the following relation between 

W, and Wn _ 1' 

W.(u)=f dR(m) Wn_l(2--mo)2--u-1)--O(--u)-- Wn_l(--oQ)) (2.4) 

where O is Heaviside's step function. 
The existence of a limit W(u)=limn_oo Wn(u) was proven by 

Furstenberg, (34) and later, unaware of this point of Furstenberg's work, for 
distributions R ( m )  with bounded densities by Verheggen, (11~ and then for 
arbitrary distributions by Nieuwenhuizen. (3) However Schmidt (2) circum- 
vented this difficulty by considering the averages: 

1 
W(Xl(u) = ~ W , ( u )  (2.5) 

N +  1 N/2 <~ ,, <. N/2 

822/41/5-6-2 
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which converge to the same limit function W(u). It satisfies the integral 
equation: 

W(u)= f dR(m) W(Z-meoZ-u  1 ) - O ( - u ) -  W ( - ~ )  (2.6) 

The integrated density of states H(03 2) is related to W(u; 0)2). Indeed, 
for a large but finite chain, H(~o 2) is approximately equal to the number of 
nodes in the sequence an ( - N / 2  <~ n <~ N/2), divided by N. In terms of the 
ratios Z,,  H(m 2) is just the fraction of negative Z,. One therefore has with 
probability 1 (or after averaging over the ensemble) (2) 

H(o~ 2) = prob{Z < 0} = - W( - m ;  032) (2.7) 

The Lyapunov coefficient, or inverse localization length, 7(O3 2) is also 
related to H(o) 2) and W(u; 032). This quantity is defined as 

7(0)2) = lim 1 N-~ 00 N ( ln laul (2.8) 

where a N is the solution of Eq. (2.1) with boundary conditions ao=0;  
al = 1.7 and H can be related by the Herbert Jones-Thouless formula: 

7(~o 2) = dg(of  2) In 1 - (2.9) 

In Section 6, we shall use the identity 

7(co 2) = - f dW(u; 032) In lul (2.10) ,/ 

which can easily deduced from Eqs. (2.2), (2.3), (2.8). 
We now briefly recall the argument of Halperin. (33) Consider a chain 

where the masses can only take two values, namely, m , = l  with 
probability p and m, = M >  1 with probability (1 - p ) .  Let co~ be the eigen- 
frequency of one light particle in a sea of heavy ones [see Eq. (3.12)]. It 
turns our that o)g exceeds the highest frequency of a chain consisting only 
of heavy masses, so that they act as damping centers for the mode at ~Oo 2. 
Now if there are only N heavy masses, this eigenfrequency will be shifted 
over an amount of order # u, where /~ is some fixed number. The 
probability for occurrence of such a situation is p ( 1 -  p)2U. The integrated 
density of states between 03~ and 09 2 = COo 2 + / t - N  is therefore approximately 
equal to 

IH(co:) - H ( ~ ) I  ~ ~ p(1 - p)2. ~ (1 - p)iU 
n>~ N 
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Eliminating N, one recovers the power-law behavior (1.1), with a = 
- l n ( 1 - p ) / l n # .  See Eqs. (3.3) and (3.8) for the explicit value of /~. 
Although this argument is very simple, it is already completely rigorous 
(see Ref. 27). 

3. SINGULAR BEHAVIOR OF THE S C H M I D T  FUNCTION 

Assume that the masses mn can take only two values: m ~ =  1 with 
probability p, and m n =  M >  1 with probability ( 1 - p ) .  Then the Schmidt 
equation (2.6) reads 

W(u)=pW(2-co2-u 1 ) + ( 1 - p ) W ( 2 - M c o 2 - u  -~) 

- O ( - u ) -  w ( - o o )  (3.1) 

Let us now reproduce Schmidt's argument on the "strange" behavior 
of the density W'(u). If W'(u) exists, then it satisfies (u ~ 0) 

W'(u)=pu-2W'(2-ooZ-u 1 ) + ( 1 - p ) u  2W'(2-me)Z-u-1) (3.2) 

The spectrum in the ~o 2 variable is contained in the interval 0 ~< 60 2 ~ 4. 
Assume 4/M< 60 2 < 4. Then the mapping T~I: u --* 2 - M o o  2 - u - 1  has two 
real fixed points, namely, u = Uo and u o 1, with 

Uo = 1 - �89 2 + I [ M f o Z ( M o )  2 - 4 ) ]  1/2 (3.3) 

u0 satisfies - l < u 0 < 0 .  If ( 1 - p )  u o 2 < l ,  we can solve W'(uo) from 
Eq. (3.2). Since W' is a density and cannot be negative, a difficulty arises if 
the parameters are such that (1 - p )  u o 2 >  1. This happens for instance i fp  
is small enough. There are only two ways out: either W'(uo) is infinite or it 
is zero. If W'(uo) is infinite, Eq. (3.2) implies that W' is also infinite at the 
point ul = (2 - o) 2 - u0) 1 ~ Tl(uo), and by induction that 14" is infinite at 
all the points un = T~(uo) (n >~ 0). This set of points is dense on the whole 
real axis if 092=2 ( t - c o s  fl) with fl/n irrational. Indeed the change of 
variable 

u _ e i l  ~ 
w = - i - - - - - - ~  (3.4) 

/ , / - - e  

maps the real axis onto the unit circle and conjugates T 1 with TI: 
w--* e2iaw. On the other hand, if W'(uo)= 0, then W' also vanishes at the 
point u 1 = 2 - ~o 2 - Uo I = Tll(uo), and by induction one finds that IV' = 0 
at u , =  T?"(uo) (n>~O), which also form a dense set of the real line 
whenever fl/rc is irrational. 
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We now examine in more detail the behavior of W(u) around u = Uo. 
Let u =  u 0 +x .  The expansion of Eq. (3.1) up to first order in x reads 

W(uo + X ) - ( 1 -  p) m(uo + #X) 

=pW(2-co2-Uol )  - 1 - W ( -  oc) + "'" (3.5) 

with 

dT~ ~ 
/~ = - ~ u  (u0) = Uo 2 > 1 (3.6) 

If W(uo + x) has a singular part Wsg on top of a smooth background for 
small x, then this function Wsg satisfies the homogeneous equation obtained 
by setting the right-hand side of Eq. (3.5) equal to zero. The general 
solution of the homogeneous equation reads 

( in  Ixl] 
Wsg(U~ +-[xi~ P +- \ l -~  J 

where the exponent e is given by 

(3.7) 

and P_+ are two arbitrary periodic functions of their argument, with unit 
period. The subscript _+ refers to the sign of x. This approach predicts the 
value of the exponent ~, the existence of periodic amplitudes P+�86 as well as 
their period, but it is a far more difficult task to determine the form of P+.. 
The very same situation occurs in the study of "hierarchical" models which 
admit an exact renormalization group transform. (12'13~ 

We have seen that the density W'(u) must be zero or infinite on a 
dense set of points if (1 - p) uo 2 > 1. This condition is equivalent to c~ < 1, 
and clearly W' diverges on a dense set of points. Whenever e > 1, the den- 
sity W'(uo) is entirely determined by the regular part of W, and is therefore 
regular. When ~ < 1, the behavior of the function W(uo + x) is dominated 
by its singular part as x --. 0. In analogy with Schmidt's discussion, one can 
show by induction that a singular part of the form (3.7) exists around a 
dense set of points, including un = T'~(Uo) (n >>. 0). 

Let us now give an intuitive argument for the existence of this set of 
singularities. Assume that p is small and consider a frequency outside the 
spectrum of heavy masses: 4 / M < c o 2 < 4 .  In order to perform a small-p 
expansion of W(u), it is useful to consider W as the distribution function of 
Zo in a semi-infinite chain. Since Zo only depends on the masses mn left of 

ln(1 - p) 
c~- - - > 0  (3.8) 

In/~ 
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the origin (n ~< 0), the dominant contribution corresponds to mn = M for all 
n, and therefore Zo = Uo (the stable fixed point of TM). The next con- 
tribution corresponds to the insertion of one light mass at site ( - K ) .  The 
associated Z(o x) reads 

Z( f  ) = T~o T,(uo) (3.9) 

In order to evaluate this number in a closed form, let us define v through 
Mco2=2(1 + c o s h v )  (implying u o = - e  -v) and perform the change of 
variable: 

U - I - e  - ~  
w (3.1o) 

u q - e  v 

which is the analog of Eq. (3.4) for transformations with real fixed points. 
This conjugates TM with TM: w ~ e a'w. One easily obtains 

w(K)=e ( 2 K + l > ( M - - 1 ) ( l + e  -u) 
2M--  1 - -e  ~ 

(3.11) 

Since all the events under consideration (K--0,  1,2,...) have the same 
relative probability, they give a logarithmically singular contribution to 
W(u) at u0. If one pursues the small-p expansion of W(u) by inserting more 
than one light mass, this logarithmic divergence will be smoothed out, but 
not disappear. The reason is that, for co2> 4/M (i.e., outside the spectrum 
of the heavy masses), these heavy masses act as damping centers for the 
excitations of the light particles. 

This argument explains why, at least for small p, a singularity in W(u) 
can be expected at u = Uo. The precise form of this singularity is given in 
Eq. (3.7). We can repeat this heuristic analysis for chains which are the 
same except the fact that m o = m  1 = - . .  = m  n= 1. This leads to 
singularities of W(u) at un = TT(uo). In this way a physical interpretation 
for the occurrence of the values u = u, in Schmidt's discussion has been 
given. The present argument (considering insertions of light masses in a 
chain of heavy ones) has been used extensively (see Ref. 14 and references 
therein). Halperin has shown that it could cause genuine singularities. Let 
us finally remark that the points Z{o K) [see Eqs. (3.9)-(3.11)] accumulate 
on Uo from one side. There exists a special value of the squared frequency, 
namely, 

4M 
co~ - 2 M -  1 (3.12) 

such that Z(o K) < u o for co o < {o2 < 4 and Z(o K) > Uo for 4/M < co2 < co2. (The 
number coo will also play a crucial role in next section; it is the eigenfre- 
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quency associated with one single light mass in between two semi-infinite 
pure chains of heavy masses.) The higher-order terms of our small-p 
expansion, which correspond to insertions of several light masses, are 
expected to give rise to the same type of singularity (3.7) on both sides 
of Uo. 

We have studied the function W(u) by the following numerical 
procedure. We enumerate exactly the 2 r possible values of ZL with the 
initial condition Z o = 0  and the corresponding 2 L probabilities. The 
memory of standard computers allows for values of L up to 18. The 
approximation W (L) to W we obtain is extremely accurate (at least for 
~o 2 > 4/M): this can be checked for instance by comparing W (14) and W (18). 
Let us illustrate some of our results. Figures 1-3 show plots of the shifted 
Schmidt function: 

V ( u ;  co 2) = W ( u ;  co ~) - I v (  - oo; co 2) (3.13) 

for three values of M and ~o2: M(1)= 3/2 and o9~1 ) = 32/9, M ( 2  ) = 2 and 
co~2 ) = 8/3, M(3)= 5/2 and ~o~3 ) = 32/15, respectively. These values are such 
that Uo = -1 /3  and # = 9 in the three cases. The probability p reads p = 
1 - 3  1/5=0.192758... implying e =  1/10. No basic difference can be seen 
between these plots. They show one outstandingly largest singularity at Uo, 
surrounded by some log-periodic structure. The nature of these 
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singularities is the same for M< 2 as for M> 2 (see Section 6). Let us recall 
the definition of the periodic amplitudes P+ [see Eq. (3.7)]" 

W(u)- W(uo) rln(uz Uo)] (3.14a) 
(U-Uo) ~ = P + L  ln# J 

W(uo) -  W(u) [ln(uo- u)] (3.14b) 
(Uo-U) ~ - P  [_ ln# 
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It is clear that P _  is much larger than P §  in Fig. 1, comparable  to P +  in 
Fig. 2, and much  smaller than P +  in Fig. 3. This is indeed expected from 
the physical  exp lanat ion  given above ,  s i n c e  O)~1) • (I)2 = 3 in the first case, 
co~2 ) = o)o 2 = 8/3 in the second  one,  co~3 ) < o) 2 = 5/2 in the third one,  and p is 
small. Figures 4 and 5 show plots of these periodic functions in the mos t  
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favorable cases: P+ (M(3)= 5/2, co~3)= 32/15) in Fig. 4; P (M(I~= 3/2, 
c0~1)=32/9 ) in Fig. 5. The abscissa is x = l n  lU-Uol. The period l n 9 =  
2.197224... is clearly observed. 

4. S I N G U L A R  B E H A V I O R  OF T H E  I N T E G R A T E D  
D E N S I T Y  OF S T A T E S  

Naively one expects that the singular behavior of the Schmidt function 
W(u; 0) 2) would cause similar singularities in the integrated density of 
states H(0)2). The latter quantity is given by H ( 0 ) 2 ) = - W ( - o %  0)2)= 
V(0, e) 2) [see Eq. (2.7)]. Unfortunately we do not have information on the 
0) 2 dependence of W at fixed u. In order to exploit our knowledge of the u 
dependence of W, let us first present a useful relation, which is valid for an 
arbitrary mass distribution R(m) and two arbitrary frequencies 0)12, 0)22: 

H(0) 2 - H(0) 2) = jJ dR(m) dW(u; 0)2) 

x [ W(2 - m0) 2 - u; 0)22) - W(2 - m0) 2 - u; 0)2)] (4.1) 

This equality can be proven by changing the variable u ~ v = 2 - m o o  2 -  u 
in the second term and eliminating the integrals over dR(m) by use of 
Eq. (2.6) in the following differential form: 

dW(u -i ,  0)2) = f dR(m) dW(2 - me) 2 - u; 0)2) 

Let 0)2 = 0)2 be fixed, and 0)2 =-0)2+ e. Assume 0 W/Ou exists. The limit 
--, 0 then gives 

H'(0)  2) = f f  dR(m) dW(u; 0) 2) m ~3 W(2 - too) 2 - u; co 2) (4.2) 

when O/Ou in the partial derivative with respect to the first argument. This 
type of integral equation has been derived by Halperin (~5/ (see also 
Ref. 16); Eq. (4.1) is a useful extension of it for situations where OW/c?u is 
not well behaved. 

Let us now show how Eq. (4.1) allows one to predict the behavior of 
H(0) 2) for certain values of (0 2, from the known singular behavior of 
W(u; 002). If 0) 2 = 0)2, 0)2 = 0)2 + e, and e is very small, the second argument 
of the W functions on the right-hand side of Eq. (4.1) can be taken equal to 
0)2. (Continuity of W(u; 0)2) in 0)2 was proven in Section 2.2 of Ref. 16, 
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starting from the Schmidt equation and the known continuity of W in u(2)). 
For the binary mass distribution, we end up with 

H(O9 2 + ~) -- H(O9 2) 

f dW(u){p[ W(2 - o92 _ u) - W(2 - o92 _ ~ _ u)] 

+ ( 1 - p ) [ W ( 2 - M O 9 2 - u ) -  W(2-MO92-Me-u)]}  (4.3) 

The strongest singularity of H(o92) will occur at the value of o92 for 
which both dW(u) and one of the terms in braces simultaneously have their 
strongest singularity. We have seen in Section 3 that each does so at u = u o, 
and hence we want to satisfy 

Uo = 2 - Mo92 - Uo (4.4a) 
or 

Uo = 2 - o92 _ Uo (4.4b) 

The solutions of Eq. (4.4a) are oo2 = 0 and o92 = 4/M, i.e., the end points of 
the spectrum of the heavy masses. We shall study the more interesting end 
point (Lifshitz) singularity around 092=4 in Section 5. The solution of 
Eq. (4.4b) is 092, defined already in Eq. (3.12). Let us insert into Eq. (4.3) 
the singular part of W(u) around u = Uo. Set u = Uo + q. We then have 

W(uo + ~1) - W(uo)~ Ir/I ~ P_+(ln Ir/I/ln ~) 

Consider first the contribution ,5H~(o92 + e) of the p2_ terms for ~ > 0. It 
reads 

(4.5) 

It is easy to convince oneself that this expression behaves like 

( l n  e~ 
6H1(O9~ q-8)~ g2~R1 \l-~p/# (g>0)  

where R1 is another function with period unity. The terms p2+, p+ p , and 
p2_ give analogous singular contributions to H(ogo 2 + ~ ) -  H(o902), both for 

> 0 and e < 0. Our final result reads 

~, -I-]o92- o9o2,2" R [ ln  '~2--  o92[ 1 (4.6) 
H(o92) - H(og~) ,o2~ ,o8 + I_ 3 1 n  p 
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where R+ are two periodic functions with unit period and where ct and # 
are as in Eqs. (3.6)-(3.8). The functions R e have the form 

R+(y) = pI+_(Uo, Uo, y) (4.7a) 

where I+(ua, Ub, y) are integrals involving the periodic functions P~ and 
pb_+ of W(u) around points ua and Ub: 

I_• ub, y ) =  (1 - x )  ~ P + [ y +  "log(1 - x ) ]  d[x~pb(y+ "log x)] 

r~176  a 

+ Jo {(x+ 1)~P_v[y+"log(x+ 1 ) ] - x ~ P + ( y + ~ ' l o g x ) }  

x d[x~P~(y + "log x)] 

fo + { ( x + l ) ~ p b [ y + " l o g ( x + l ) ] - x ~ P ~ ( y + " l o g x ) }  

x d[x~P~(y + "log x)] (4.7b) 

where "log x-= In x/ln ~t. Apart from the convolution of the singular parts 
of the two W functions, there are also convolutions of singular with regular 
components, behaving like [8[ ~+~, as well as convolutions of the regular 
parts. As these contributions do not yield divergencies in the spectral den- 
sity, we will not discuss them further. Note, however, that the ]e[~+~ terms, 
and not the le[ 2~ terms discussed above, are the leading singular terms 
when c~ > 1. 

In previous section we have presented a physical argument explaining 
why the Schmidt function can be expected to be singular at the fixed point 
u0 of TM, and at the points u, = ~(u0). The same picture can be extended 
to the integrated density of states. Consider an infinite chain of heavy 
masses, with only one light mass at the origin. The fixed boundary con- 
ditions imply the following relation [see Section 2]: 

T~o T~o T~(0) = c~ (4.8) 

In other words, the stable fixed point Uo of T M and the unstable one uo 1 
have to satisfy: 

T~(uo) = Uo I (4.9) 

This relation is precisely equivalent to Eq. (4.4b), and hence leads to 
(02=0) 2. H(0) 2) is expected to be singular at that point because many 
eigenfrequencies around 0)o 2 occur in chains which have mo = 1 and m+j = 
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Table I. Contributions to the Periodic Functions R• Arising from 
Convolutions of Singular Parts of W(u) in Eq. (4.3) Around u=u~,, 

2--W2--U=Ub or u=un, 2 - M w a - U = U c  �9 

Island ua Ub Uc R+(y )  

H ~ L H  ~ Uo Uo pl+ (Uo, Uo ; y)~ 

H ~ L 2 H  ~~ u 0 Lu 0 pl+(uo, LuG y) 

LUo Uo + pI+(Luo, uo; y) 

H ~ L 3 H  ~ u 0 L2Uo pI+(u o, L2Uo; y) 
Luo LUo + pI++_ (Luo, LUo; y) 
L2Uo u 0 q-pI+ (L2uo, Uo; y) 

H ~ L H L H  ~ Uo HLuo pI+ (Uo, HLu 0 ; y) 
LUo - -  + (1 - p) M2~I+ (Luo. LUo ; 

y + Ulog M) 
HLuo uo + pI+_(HLuo, Uo; y) 

H ~ L 2 H L H  ~ Uo LHLuo ) 

and l 2pI +(u~ LHLu~ y) 
H~LHL2H~O b LHLu  ~ uo 

Luo HLuo 

Lu o HLuo 
L2Uo 

Luo 
HL2uo u o 

Uo HL~uo 

Luo 

Lu o 

L Zuo 

+ 2pI+(Luo. HLuo; y) 

+ 2(1 - p)  M2~I+ (L2uo, Luo ; 
y + "log M) 

+ 2pI+ (HL2uo. Uo; y) 

aThe I._ are defined in Eq. (4.7b). Note that l+(u, ,  ub; y )=I+(ub ,  ua; y). 
b Note that the islands H ~ L H L ~ H  ~ and H ~ L 2 H L H  ~ have the same eigenfrequencies. 

m+2 . . . . .  m• for instance, since the heavy masses damp the 
excitations of the light ones far away from the origin for (.0 2 > 4/m~ as dis- 
cussed in Section 3. From this argument it is clear that singularities are also 
expected at frequencies associated with sequences of the form 
HHHHLLHHHH; HHHLHLHHHH; HHHHLLLHHHHH, etc. These 
are determined by the equations: ~ ( u 0 ) = U o l ;  TITMTl(uo)=Uo~; 
T31(Uo)=Uo ~ respectively. These relations generalize Eq. (4.4b) to every 
case where the two functions W occurring in Eq. (4.1) are simultaneously 
singular. Sequences with a few light masses in a heavy background have 
been discussed extensively in the literature (see [14] for a review). For 
islands with two or more light particles, there are several convolutions of 
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singular parts of the Schmidt function which contribute in Eq. (4.3). Con- 
sider the contribution of the singularities of the W functions at u = ua, 2 - 
0) 2 - ua = u b or at u = ua, 2 - Moo 2 - u~ = u,.. Let us take the example of the 
island H ~ L 2 H L H  ~176 Its eigenfrequencies are determined by L 2 H L u o  = Uo ~ 
(where the letters L, H stand for T1, TM, respectively). One easily verifies 
that this is equivalent to L H L u o = ( L u o ) - ~ ;  other equivalent forms are 
H L u o  = (L2uo) -1, L u  o = (HLZuo)  1, Uo = ( L H L 2 u o )  1. These expressions 
have the physical interpretation of cutting the island somewhere and 
equating the continued fractions to the left and to the right. The con- 
tributions to Eq. (4.3) corresponding to these relations arise from con- 
volutions of singular parts in different regions of the interval of integration. 
The table presents the results for the first few islands. Note that, if there is a 
contribution from u = u~, 2 -  0) 2 -  ub = ua, there is also one from u = Ub, 
2 -  O02- Ub = Ua. This is related to the fact that the eigenfrequencies of 
these islands in a sea of heavy masses do not change if the order of the 
masses in the island is reversed. Also related is the symmetry 
I+(U a, U b, y)=I+_(Ub,  Ua, y) .  For the terms involving u c = 2 - M O 0 2 - U a ,  
one has to keep in mind that e is replaced by Me. 

We now show that the set of frequencies where the singularity (4.7) 
occurs is dense in the interval 4 / M  < co2< 4. Indeed consider the sequence 

2 defined by ('On 

TT(uo) = Uo 1 (4.10) 

By using the conjugation of T1 with 7"1: w--* e2i~w, with w as in Eq. (3.4) 
and co2= 2 ( 1 -  cos fl), we transform (4.10) into 

e 2 i n  fl _ 2 - u o l e - i ,  _ uoei ,  = e iq~(fl) (4.11 ) 
2 _ U o l e i ~ _ U o  e ifl 

Since (e2in~)n>~O is dense in the unit circle whenever/~/g is irrational, and 
q~(/~) is a smooth function of/~, Eq. (4.11) is satisfied on a dense set of 
values of co, provided cp(/~) is real, i.e., o02> 4/M,  which proves our claim. 
Thus, for 4 / M <  o02< 4, dH/do02 has singularities. This density of states, 
however, diverges only when e < 1/2, i.e., in the subinterval [o0~ ; 4] with 

o)2_ - ( 2 -  P)2 (4.12) 
M(1 - p )  

This interval only exists for 

p2 
M >  1 - I - - -  (4.t3) 4(1 -p )  
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~ 21B 31~ 312 31, 31~' ~18 ' , i s  

W = 
Fig. 6. Plot of the integrated density of states H(092), on the whole singular interval 4/M < 

09 2 < 4, for p = 1/4 and M = 3/2. 

Just as for the S c h m i d t  func t ion  W(u), we h a v e  s tud ied  the in tegrated  
dens i ty  o f  states H(co 2) n u m e r i c a l l y ,  by  exact  e n u m e r a t i o n  up  to a cha in  

s ize  L =  18. The  var ia t ions  o f  H(co 2) in the w h o l e  interval  4 / M <  ~o 2 < 4  
w h e r e  it is s ingular  are p lo t t ed  o n  Figs .  6 - 9  for p = 1/4 and M = 1.5, M = 2, 
M = 3 and  M = oo respect ively .  T h e  last va lue  ( M  = oo ) c o r r e s p o n d s  to an 
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2 , 0  
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J 

Y 
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2 . 2  2 4 .  2 . 6  2 8 .  3 . 0  3 , 2  3 . 4  3 . 6  

Fig. 7. Same as Fig. 6, for M = 2. 
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i ~ L_ i . J 
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Fig. 9. Same as Fig. 6, for M--+ or. 
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exactly soluble c a s e  (173 which will be studied in detail in Section 5. The two 
largest singularities always occur  at 002= COo: [see Eq. (3.12)], solut ion of 
Tl(uo) = Uo 1, and 002 = 002, with 

3 M -  4 + [ M ( 9 M -  8)]  1/= 
002 _ (4.143 

2 ( M -  1) 

solution of ~ ( u 0 )  = Uo 1. Our  discussion of insertions of one or two light 
masses in a pure  backg round  of heavy masses is therefore fully relevant. 
The periodic ampl i tudes  R+ and R of H(00 2) a round  co:~ are plot ted on 
Figs. 10 and 11, respectively, for M = 4 ,  and p=0.207950. . ,  such that  
c~ = 1/20. The  periodicity # = Uo 2 = 105.9150... (since u 0 = 3 - co 23 is clearly 
observed,  a l though the smallness of these quantit ies ( R + ~ 3  x 10 2 and 
R ~ 5  x 10 3) prevents  our  enumera t ion  me thod  from having a good  con- 
vergence in a wide domain  of x = In Io) 2 -  6o2 t. The convergence of the 
periodic functions a round  co2= 002 is not  good  enough to deserve to be 
presented here. 

Figure 12 shows a plot  of  H(00 2) on the whole spect rum 0 < 002 < 4, for 
M =  5 and  p =0.5.  As expected, we find a very smooth  function on the 
interval 0 < 002 < co 2 , and a singular one for 002_ < 002 < 4. The remarkab le  
values of 002 (4/M, e) 2 , 002,002) are indicated by arrows. 

R+ 
10 

4.5  

4 0  

3 .5  

3 .a  

2 5  

1.5 

- 1 2 . 8  - 1 8 . $  - 9 . ~  - 7 . 5  - 6 , 0  - '4 .5  - 3 . 0  -4 .5 

• 

Fig. 10. P lo t  of the per iodic  ampl i tude  R+ of the densi ty  of s tates  a round  col=, vs. x =  
ln(~o 2 - oj2), for M = 4 and  p such tha t  c~ = 0.05. 
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Fig. 11. 
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5. T H E  L I F S H I T Z  S I N G U L A R I T Y  

This section is devoted to the behavior of H(~o 2) at ~o2~4 -. A 
Lifshitz singularity (18/of the type 

1 - H(o92) ~ exp[ - C(4 - 09 2)  - 1/2]  ( 5 . 1 )  

is expected at that point, which is the band edge of a pure medium con- 
taining only light masses, and hence the band edge of the random model 
under consideration. See Ref. 35 for a recent review. 

Let us first investigate this Lifshitz singularity in the limit where the 
mass ratio M becomes infinitely large. An exact solution of this case was 
given first by Domb et al. ~17) The problem becomes very simple in this 
limit, since the variable Z ,  [see Eq. (2.2)] vanishes whenever m, ~ ~ .  If 
we choose the boundary condition Zo = 0, then it is easy to realize that the 
variable Zm assumes only the values tt = T~(0) with TI(Z) = (2 - co 2 - Z) 
with probabilities 

t , } -  p~(1 - p), O<~l<~m-1 (5.2) 
qm.l = Prob { Z m = - -  { pro, l = m 

The limit function V(u; ~o 2) [see Eq. (3.13)] therefore reads 

V(u) = q .,otu- t,) (5.3) 
l>~0 

with q~ , t=p t (1 -p ) .  The change of variable (3.4) leads easily to the 
following expression for tt: 

sin/7 
tl = (5.4) 

sin(/+ 1 )7 

where 

co2 = 2(1 + cos ?), O~<?~<Tt (5.5) 

In other terms, Y = 7r-/~ with /~ as in Eq. (3.4). The integrated density of 
states is then given by Eq. (2.7), namely, 

H(~o2) = (1-- p) ~ p'O(--tr (5.6a) 
l~>0 

o r  

1 -H(o92) = (1 - p )  ~ p%9(t,) (5.6b) 
l />0 
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It is easy to check that O(tl) is nonzero if and only if there exists an integer 
k >/I, such that 

17 < k n  < ( l+  1)7 (5.7) 

and therefore one obtains 

l_H(~o2)=( l_p)  ~ pEkX7 (5.8) 
k ~ > l  

where square brackets denote the integer part, and where the variable x 
reads 

7Z 
x = -  (~.9~ 

7 

When ~o 2 varies from 0 to 4, y decreases from rc to 0, and x increases from 1 
to + ~ .  

Equation (5.8) implies that H(o~ 2) is discontinuous at every rational 
value', of x. Indeed, if x = a/b where the integers a and b satisfy 1 ~< b < a and 
are mutually prime, then H presents a discontinuity 3(~o 2) at the associated 
value of c~ 2, which reads 

3(co 2) = lim [ - H ( r J )  2 q-  g )  - -  H ( ( ~ o  2 - ~ ) ]  - 
e ~ o  

(1 _ p)2pa 1 

1 m p a  
( 5 . 1 0 )  

The values of these discontinuities have the following simple interpretation. 
The factor (1 - p ) 2 p a  I is the probability for the occurrence of a sequence 
of ( a - 1 )  light masses surrounded by two infinitely heavy ones. Indeed 
such a subchain has eigenmodes at m2=2[1  +co s  ~(b/a)]. The factor 
(1 -pa) 1 is caused by chains with length ja ( j =  2, 3,...) which also have 
modes at these frequencies, and a relative probability p(j-l)aO7) The 
largest discontinuity occurs for m2= 2 (x = 2): 

p(1 -p)  
A ( 2 ) - - -  (5.11) 

l + p  

(see Fig. 9). 
These discontinuities, which occur only in the M ~ ~ limit, can be 

viewed as the e ~ 0 limit of the singular behavior (4.7), since e defined in 
Eq. (3.8) indeed goes to 0 when M ~  0o at fixed mz. In particular, the value 
o~ [see Eq. (3.12)] goes to 2, where the largest discontinuity (5.11) occurs. 
This phenomenon is also illustrated by Figs. 6-9. 
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Let us now turn to the Lifshitz singularity. When ~o 2 is close to 4, x is 
large, and the sum (5.8) is dominated by the term k = 1. One has therefore 

1 - H(co 2) ~ pXQ(x) (5.12) 

where Q(x) is the following function: 

Q(x)= ( l - p ) .  p~X~-x ( M ~  c~) (5.13) 

This result is indeed of the type (5.1), with 

C = rt Iln p] (5.14) 

but the striking feature is that it is modulated by a function Q(x), which is 
periodic in x, and not in In x. Q has period unity, just as the fractional 
part: x ~ x -  Ix].  

The behavior (5.12) of 1 -  H(~o 2) can be shown to hold for arbitrary 
values of M, with the definition (5.9) of x, and where Q is some M-depen- 
dent amplitude with period unity. The complete argument will be given 
elsewhere, (32) since it is closely related to the study of H(o9 2) around 
"special frequencies" (see next section). Let us just mention that we obtain 

1 -H(o~ 2) xY~ (1 - p )  Z (vo+x)  (5.15) 

where Vo is the constant: 

(__s 
(5.16) 

and the function Z is related to the Schmidt function W(u; o92) at the band 
edge (co 2 = 4): 

( 1 )  
Z ( x ) =  W - 1 + - ; 4  - W(--1; 4) (5.17) 

x 

Our result (5.12) is a simple consequence of the fact that Z satisfies the 
functional equation: 

Z(x)  = pZ(x  - 1) (5.18) 

whenever x > 1 / [ 4 ( M -  1)]. 
Figure 13 shows a plot of the periodic amplitude Q(x), for p = 0.2 and 

M =  3. Although this function is continuous, it looks very close to the 



Singular Behavior of the Density of States 767 

Fig. 13. 
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Plot of the periodic function Q(x) modulating the Lifshitz singularity at co 2 = 4, for 

M = 3, and p = 0,2. 

M--, oo result (5.13), which exhibits one discontinuity at each integer. For 
the values of p and M we have chosen to draw Fig. 13, the asymptotic 
equality (5.15) is extremely accurate for values of x down to x = 6. 

6. E X T E N S I O N  TO O T H E R  M A S S  D I S T R I B U T I O N S ;  
T H E  L Y A P U N O V  C O E F F I C I E N T ;  C O N C L U S I O N S  

We have studied analytically and numerically the Schmidt function 
W(u) and the integrated density of states H(co 2) of a random harmonic 
chain with a binary mass distribution. Both quantities can be singular on a 
dense set of points. These power-law singularities of index c~ are modulated 
by a log-periodic amplitude with period /~ [see Eqs. (3.14) and (4.7)], 
where both c~ and # depend on the location of the singularity. 

This phenomenon is caused by the following two combined effects: 
damping of the excitations of the light particles by the heavy ones 
(existence of a real Uo), and a "resonance" property (giving rise to a dense 
set of singular points). 

The Lifshitz singularity at the upper edge of the spectrum also exhibits 
a periodic amplitude. 

The singularities in H(co 2) cause analogous ones in the Lyapunov coef- 
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ficient 7(0)2). Indeed, from the behavior (1.1) of H(0) 2) and from the for- 
mula (2.9) for 7(0)2), we deduce 

2~ (In ]et'~ 
7(0)~+e)-7(0)o2)~lel T_+ \ l n # J  

where T_+ are periodic functions with unit period, given by 

fo ~ v +  1 2~ T+(log ]el)= l n - - d [ v  R__(~log ]el v)] 
- /9 

(6.1) 

+ In d[v2~R+_(~'log lel v)] (6.2) 

Note that this relation can also be derived without using Eq. (2.9). Starting 
from (2.10), we derive, in a similar way to Eq. (4.1), 

7(0) 2) - 7(0)22) = fff dR(m) dW(u; 0)2) dW(v; 0)2) 

u + v -  2 + m0)~ + i0) 
x Reln  \ u + v - - ~ m 0 ) 2 + ~  (6.3) 

We set again 0)2 = 0)2; 0)2 ~__ 0)2 _[_ e. The points where u + v - 2 + 0)2 or 
u +  v -  2 + M 0 )  2 becomes small and both W functions have a singularity 
give a contribution proportional to lel 2~. Collecting all terms, we precisely 
recover (6.2). 

It is interesting to note that Eqs. (4.1) and (6.2) can be combined into 
one single equation for the difference of 7(0) 2) + itcH(o) z) at 0)2 and 0)22. 
That equation has the form of Eq. (6.3) where the whole logarithm is taken 
instead of its real part. This is related to the fact that 7 and ~H are, respec- 
tively, the real and imaginary parts of an analytic function, which can be 
calculated from an integral equation valid for complex values of co2. ~3) 

We have performed a numerical computation of 7(0) 2) for the case 
M =  10, p = 0.1, by our exact enumeration procedure and using Eq. (2.10). 

Figure 14 shows a plot of 7(0)2). One indeed observes deep 
singularities at 0)o 2 and 0)12, defined in Eqs. (3.12) and (4.14), where H(0) 2) 
also has its largest singularities. The values 7(0)~)=0.7 and 7(0) 2) = 2.73 
have been estimated by extrapolation using Eq. (6.1). At the other points 
where H has a singularity, 7 will behave like (6.1), but these "dips" are 
expected to be much smaller than the two we have discussed, and they are 
not resolved in our plot. 

It has been shown, both using the weak-disorder expansion, ~19-21) and 
in exact solutions, ~22) that 7(0) 2) has another dense set of special values of 
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Fig. 14. Plot of the Lyapunov coefficient 7(e) 2) for M= 10 and p =0.1�9 

co 2 called anomalies. These are not related to the singularities we discuss 
here, for at least two reasons: the anomalies do not exhibit power-law 
behavior, and occur for every kind of mass distribution. 

Since the irregular behavior of H occurs only at high frequencies 
( 4 /M<c o2<4) ,  it will not affect thermodynamical quantities. A com- 
putation of the derivative of the specific heat with respect to temperature 
has been recently performed (23) by a method involving the cumulants of the 
mass distribution. Although some dependence on the kind of distribution is 
observed, a smooth temperature dependence is also found for binary dis- 
tributions. 

It has been speculated that the singular behavior of the density of 
states we have considered could be related to the presence of "special fre- 
quencies." These are isolated frequencies where the density of states 
vanishes exponentially fast. (24 26.32) This occurs only if the mass ratio is 
larger than or equal to 2. Since the singularities we have considered exist 
for arbitrary mass ratio provided inequality (4.13) is satisfied, also these 
two phenomena are clearly not related. 

Although the present study has been limited to binary mass dis- 
tributions, our results remain valid for arbitrary discrete mass distributions: 

dR(m)= ~ P~6(m--mk) dm (6.4) 
t < ~ k ~ N  
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with N>~2, 0 < P k < l ,  and m l < m 2 <  ' "  <mN. Each species with mass 
mk, except the lightest one (k = 1), gives rise to a singular component of 
H(~o 2) for 4/mk <o)2< 4/ml, and to divergences of dH/do~ 2 for o)2 (k )<  
co 2 < 4/ml, with 

(1 + Pk) 2 
~02 (k) (6.5) 

mkP~ 

When the distribution dR(m) contains, apart from a discrete contribution 
of the type (6.4), also an absolutely continuous component, the situation 
does not change, as long as the same argument of a dense set of 
singularities caused by fixed points can be repeated. 

In models where the mass distribution dR(m) has a smooth density, 
one does not expect any singularity in the density of states, except possibly 
at the band edges. This is indeed verified for exponential and gamma dis- 
tributions, where the integrated density of states, the localization length 
and the one-particle Green's function can be obtained exactly. ~16) There 
also exist rigorous bounds on the density of states, given bounds on the 
density of the mass distribution. ~27'36) 

The modulation of power-law singularities by log-periodic functions 
has also been found in other one-dimensional disordered models, such as 
diffusion in a random medium, ~28) or the random field Ising chain. ~29) 
Reference 30 also discusses this problem in a simpler example. This 
periodic structure only exists if the distribution of the hopping 
probabilities, magnetic fields, masses .... is a discrete one. 

The present work shows that one should be careful in extracting a 
continuous density of states in binary, ternary, etc., random one-dimen- 
sional systems from numerical or other approximate methods, since this 
quantity may not be well defined under some circumstances. A histogram is 
more appropriate! 

It would be interesting to know whether the measure H(co 2) has a 
singular continuous component (in the sense of measure theory). A purely 
singular continuous measure which has very analogous properties to H(~o 2) 
has been studied in the mathematical literature. ~31) The singularities we 
have discussed might also occur in the localization problem. 

ACKNOWLEDGMENTS 

We wish to thank J. Groeneveld, C. Itzykson, Y. Meyer, P. Moussa, J. 
Peyri6re, and B. Souillard for interesting discussions. One of us (Th. M. N.) 
is sponsored by the Stichting voor Fundamenteel Onderzoek der Materie 
(F.O.M.), which is supported by the Stichting voor Zuiver Wetenschap- 
pelijk Onderzoek (Z.W.O.). We are also indebted to B. Simon for useful 
comments. 



Singular Behavior of the Density of States 771 

REFERENCES 

1. F. J. Dyson, Phys. Rev. 92:1331 (1953). 
2. H. Schmidt, Phys. Rev. 105:425 (1957). 
3. Th. M. Nieuwenhuizen, Physica 113A:173 (1982). 
4. P. Dean, Proc. R. Soc. London Ser. A 254:507 (1960); 260:263 (1961). 
5. J. E. Gubernatis and P. L. Taylor, ./. Phys. C 4:L94 (1971). 
6. R. L. Agacy and R. E. Borland, Proc. Phys. Soc. 84:1017 (1964). 
7. M. O. Robbins and B. Koitler, Phys. Rev. B 27:7703 (1983). 
8. C. E. T. Goncalves da Silva and B. Koiller, Solid State Commun. 40:215 (1981). 
9. J. M. Langlois, A. M. S. Tremblay, and B. W. Southern, Phys. Rev. B 28:218 (1983). 

10. B. Koiller, M. O. Robbins, M. A. Davidovich, and C. E. T. Goncalves da Silva, Solid 
State Commun. 45:955 (1983). 

11. T. Verheggen, Commun. Math. Phys. 68:69 (1979). 
12. B. Derrida, C. Itzykson, and J. M. Luck, Commun. Math. Phys. 94:115 (1984). 
13. C. Itzykson and J. M. Luck, Proceedings of the Brasov International School, "Critical 

Phenomena: Theoretical Aspects." Progress in Physics, vol. 11 (Birkh~iuser, Boston 1985). 
14. W. M. Visscher and J. E. Gubernatis, in Dynamical Properties of Solids, G. K. Horton and 

A. A. Maradudin, eds. (North-Holland, Amsterdam, 1980). 
15. B. I. Halperin, Phys. Rev. 139A:104 (1965). 
16. Th. M. Nieuwenhuizen, Physica 125A:197 (1984). 
17. C. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Phys. Rev. 115:24 (1959). 
18. I. M. Lifshitz, Adv. Phys. 13:483 (1964). 
19. M. Kappus and F. Wegner, Z. Phys. B 45:15 (1981). 
20. C. J. Lambert, Phys. Rev. B 29:1091 (t984); J. Phys. C 17:2401 (1984). 
21. B. Derrida and E. Gardner, J. Phys. (Paris) 45:1283 (1984). 
22. Th. M. Nieuwenhuizen, in Proceedings of the International Conference on Localization, 

Interaction and Transport Phenomena in Impure Metals, L. Schweizer and B. Kramer, eds. 
(Springer, Heidelberg, 1984) plus supplement volume (PTB, PG-1; PTB. Braunschweig, 
1984), p. 45; see also C. J. Lambert, ibid, p. 23. 

23. Th. M. Nieuwenhuizen, J. Phys. A 17:1111 (1984). 
24. J. Hori, Progr. Theor. Phys. 34:471 (1964). 
25. K. Wada, Progr. Theor. Phys. 36:726 (1966). 
26. J. Hori, in Spectral Properties of Disordered Lattiees, D. ter Haar, ed. (Pergamon, Oxford, 

1968). 
27. B. Simon and M. Taylor, Commun. Math. Phys. 101:1 (1985). 
28. J. Bernasconi and W. R. Schneider, 3. Phys. A 15:L729 (1982). 
29. B. Derrida and H. J. Hilhorst, J. Phys. A 16:2641 (1983). 
30. C. de Calan, J. M. Luck, Th. M. Nieuwenhuizen, and D. Petritis, J. Phys. A 18:501 (1985). 
31. J. Peyri6re, Z. Wahrscheinliehkeitstheorie verw. Gebiete 47:289 (1979) and references 

therein. 
32. Th. M. Nieuwenhuizen, J. M. Luck, J. Canisius, G. L. Van Hemmen and W. J. Ventevogel 

(in preparation). 
33. B. I~ Halperin, Adv. Phys. 13:123 (1967). 
34. H. Furstenberg, Trans. Am. Math. Soc. 108:377 (1963). 
35. B. Simon, J. Star. Phys. 38:65 (1985). 
36. F. Wegner, Z. Phys. B 44:19 (1981). 


